## Uses of Classorg.openscience.cdk.math.Vector

• Packages that use Vector
Package Description
org.openscience.cdk.math
org.openscience.cdk.math.qm
• ### Uses of Vector in org.openscience.cdk.math

Fields in org.openscience.cdk.math declared as Vector
Modifier and Type Field and Description
`static Vector` Vector.`EX`
Unary vector in 3 dimensional space
`static Vector` Vector.`EY`
Unary vector in 3 dimensional space
`static Vector` Vector.`EZ`
Unary vector in 3 dimensional space
`static Vector` Vector.`NULLVECTOR`
Null vector in 3 dimensional space
Methods in org.openscience.cdk.math that return Vector
Modifier and Type Method and Description
`Vector` Vector.`add(Vector b)`
`Vector` Vector.`cross(Vector b)`
Cross product, only well definited in R^3
`Vector` Vector.`duplicate()`
Copy a vector
`static Vector` Matrix.```elimination(Matrix matrix, Vector vector)```
Solves a linear equation system with Gauss elimination.
`Vector` IFunction.`getValues(Matrix x)`
Return the function value The rows of the matrix x are the Parameters like x,y,z and the columns are the values which must calculated.
`Vector` Matrix.`getVectorFromColumn(int index)`
Creates a Vector with the content of a column from this Matrix.
`Vector` Matrix.`getVectorFromDiagonal()`
Creates a Vector with the content of the diagonal elements from this Matrix.
`Vector` Matrix.`getVectorFromRow(int index)`
Creates a Vector with the content of a row from this Matrix.
`Vector` Vector.`mul(double b)`
Multiplikation from a vectors with an double
`Vector` Matrix.`mul(Vector a)`
Multiplies a Vector with this Matrix.
`Vector` Vector.`negate()`
Negates this vector
`Vector` Vector.`normalize()`
Normalize this vector
`Vector` Vector.`sub(Vector b)`
Subtraktion from two vectors
Methods in org.openscience.cdk.math with parameters of type Vector
Modifier and Type Method and Description
`Vector` Vector.`add(Vector b)`
`Vector` Vector.`cross(Vector b)`
Cross product, only well definited in R^3
`double` Vector.`dot(Vector b)`
Multiplikation from two vectors
`static Vector` Matrix.```elimination(Matrix matrix, Vector vector)```
Solves a linear equation system with Gauss elimination.
`Vector` Matrix.`mul(Vector a)`
Multiplies a Vector with this Matrix.
`Vector` Vector.`sub(Vector b)`
Subtraktion from two vectors
Constructors in org.openscience.cdk.math with parameters of type Vector
Constructor and Description
```Quaternion(Vector axis, double angle)```
Generate a quaternion from a rotation axis and an angle
• ### Uses of Vector in org.openscience.cdk.math.qm

Methods in org.openscience.cdk.math.qm that return Vector
Modifier and Type Method and Description
`Vector` OneElectronJob.`getEnergies()`
Returns the energies of the orbitals
`Vector` ClosedShellJob.`getEnergies()`
`Vector` GaussiansBasis.`getPosition(int index)`
Gets the position of a base.
`Vector` AngularMomentum.```getSpinVector(double theta, double phi)```
Calculates a spin vector by a direction specified by theta and phi
`Vector` Orbitals.```getValues(int index, Matrix m)```
Get the function value of a orbital
`Vector` FourierGridBasis.```getValues(int index, Matrix m)```
`Vector` IBasis.```getValues(int index, Matrix x)```
Calculates the function values.
`Vector` GaussiansBasis.```getValues(int index, Matrix m)```
Calculates the function values.
Methods in org.openscience.cdk.math.qm with parameters of type Vector
Modifier and Type Method and Description
`double` GaussiansBasis.```calcD(double normi, double normj, double alphai, double alphaj, Vector ri, Vector rj)```
`double` GaussiansBasis.```calcV(int i, int j, Vector rN, double Z)```
Calculates the core potential.
`protected void` GaussiansBasis.```setBasis(int[] nx, int[] ny, int[] nz, double[] alpha, Vector[] r, IAtom[] atoms)```
Set up basis with gauss funktions f(x,y,z) = (x-rx)^nx * (y-ry)^ny * (z-rz)^nz * exp(-alpha*(r-ri)^2).
Constructors in org.openscience.cdk.math.qm with parameters of type Vector
Constructor and Description
```GaussiansBasis(int[] nx, int[] ny, int[] nz, double[] alpha, Vector[] r, IAtom[] atoms)```
Set up basis with gauss funktions f(x,y,z) = (x-rx)^nx * (y-ry)^ny * (z-rz)^nz * exp(-alpha*(r-ri)^2).