public class GaussiansBasis extends Object implements IBasis
f(x,y,z) = (x-rx)^nx * (y-ry)^ny * (z-rz)^nz * exp(-alpha*(r-ri)^2)
S = <phi_i|phi_j>
J = <d/dr phi_i | d/dr phi_j>
V = <phi_i | 1/r | phi_j>
Constructor and Description |
---|
GaussiansBasis() |
GaussiansBasis(int[] nx,
int[] ny,
int[] nz,
double[] alpha,
Vector[] r,
IAtom[] atoms)
Set up basis with gauss funktions
f(x,y,z) = (x-rx)^nx * (y-ry)^ny * (z-rz)^nz * exp(-alpha*(r-ri)^2).
|
Modifier and Type | Method and Description |
---|---|
double |
calcD(double normi,
double normj,
double alphai,
double alphaj,
Vector ri,
Vector rj) |
double |
calcG(int n,
double t,
double alphai,
double alphaj,
double xi,
double xj,
double xN)
Transfer equation for the calculation of core potentials
|
double |
calcG(int n,
int m,
double u,
double alphai,
double alphaj,
double alphak,
double alphal,
double xi,
double xj,
double xk,
double xl)
Transfer equation for a four center integral.
|
double |
calcI(int i,
int j,
int k,
int l)
Calculates a two eletron fout center integral
I = <chi_i chi_j | 1/r12 | chi_k chi_l >.
|
double |
calcI(int ni,
int nj,
int nk,
int nl,
double u,
double alphai,
double alphaj,
double alphak,
double alphal,
double xi,
double xj,
double xk,
double xl)
Transfer equation for a four center integral.
|
double |
calcJ(int i,
int j)
Calculates the impulse J = -<d/dr chi_i | d/dr chi_j>.
|
double |
calcJ(int ni,
int nj,
double alphai,
double alphaj,
double xi,
double xj)
Transfer equation the the calculation of the impulse
|
double |
calcS(int i,
int j)
Calculate the overlap integral S = <phi_i|phi_j>.
|
double |
calcV(int i,
int j)
Calculates the core potential.
|
double |
calcV(int i,
int j,
Vector rN,
double Z)
Calculates the core potential.
|
double |
getMaxX()
Gets the dimension of the volume, which describes the base.
|
double |
getMaxY()
Gets the dimension of the volume, which describes the base.
|
double |
getMaxZ()
Gets the dimension of the volume, which describes the base.
|
double |
getMinX()
Gets the dimension of the volume, which describes the base.
|
double |
getMinY()
Gets the dimension of the volume, which describes the base.
|
double |
getMinZ()
Gets the dimension of the volume, which describes the base.
|
Vector |
getPosition(int index)
Gets the position of a base.
|
int |
getSize()
Gets the number of base vectors.
|
double |
getValue(int index,
double x,
double y,
double z)
Calculates the function value an (x,y,z).
|
Vector |
getValues(int index,
Matrix m)
Calculates the function values.
|
protected void |
setBasis(int[] nx,
int[] ny,
int[] nz,
double[] alpha,
Vector[] r,
IAtom[] atoms)
Set up basis with gauss funktions
f(x,y,z) = (x-rx)^nx * (y-ry)^ny * (z-rz)^nz * exp(-alpha*(r-ri)^2).
|
protected void setBasis(int[] nx, int[] ny, int[] nz, double[] alpha, Vector[] r, IAtom[] atoms)
atoms
- The atom will need to calculate the core potentialpublic int getSize()
public double getMinX()
public double getMaxX()
public double getMinY()
public double getMaxY()
public double getMinZ()
public double getMaxZ()
public double getValue(int index, double x, double y, double z)
public Vector getPosition(int index)
public double calcD(double normi, double normj, double alphai, double alphaj, Vector ri, Vector rj)
public double calcS(int i, int j)
IBasis
public double calcJ(int ni, int nj, double alphai, double alphaj, double xi, double xj)
public double calcJ(int i, int j)
IBasis
public double calcG(int n, double t, double alphai, double alphaj, double xi, double xj, double xN)
public double calcV(int i, int j, Vector rN, double Z)
i
- Index of the first basej
- Index of the second baserN
- Position the core potentialZ
- Atomic number of the nucleouspublic double calcV(int i, int j)
public double calcG(int n, int m, double u, double alphai, double alphaj, double alphak, double alphal, double xi, double xj, double xk, double xl)
public double calcI(int ni, int nj, int nk, int nl, double u, double alphai, double alphaj, double alphak, double alphal, double xi, double xj, double xk, double xl)
public double calcI(int i, int j, int k, int l)
IBasis
Copyright © 2021. All rights reserved.